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I. INTRODUCTION

The Bernstein polynomials for a bounded function f on [0, 1] are
defined by

11

BnU; x)= L f(k/n)Pn.d x ),
k~O

where Pn.dx) = W xk(l- xt k. It is well known that if j E C[O, 1] and
w( b) (b > 0) is the modulus of continuity of j on [0, I], then

max IBn(f, x) - j(x)1 ::::; ~ w(n - 1/2).
O~x~1

F or a step function j of bounded variation with finitely many steps III

every closed subinterval of (0, 1), Hoeffding [7] showed that

where

. r:.fI. Ahm yn IBnU,x)-j(x)ldx= -f(f),
fl-X 0 n

f(f) = f X
I
/
2(l- X)l/2 Id[(x)l·

( 1)

However, the critical condition that j be a step function makes (I) merely
a pathological result. Nevertheless, the interesting limit is a deep result.

The purpose of this note is to give an asymptotic limit of the L p norm for
a class of approximation operators. The results are obtained for the Feller
operator Ln(f, x) (d. Khan [10]) which contains various well-known

339
0021-9045/85 $3.00

Copyright:c 1985 by Academic Press, Inc
All rights of reproduction in any form reserved



340 RASUL A. KHAN

operators (see also Hahn [6] and Levikson [12]). Section 2 gives some
preliminaries and the main results are established in Section 3. Several
special cases are discussed in Section 4.

2. PRELIMINARIES

The author (cf. Khan [10]) extended the well-known properties of
Bernstein polynomials to the Feller operator LnCt; x). Many well-known
approximation operators such as Bernstein, Szasz, Weierstrass, Baskakov,
and Meyer-Konig-Zeller, etc., are all special cases of LnCr. x). Let
XI' X 2'··. be iid (independent and identically distributed) random variables
with mean x and variance (J"2(X) ((J"(x) > 0) where x is a continuous
parameter taking values in an interval Ie; [f;£ = ( -'L, 'x). In what follows
O"(x) is assumed to be continuous in x E I. Let f be a bounded continuous
function on If;£. Set S" = XI + ... + X" and define the Feller operator by

L"U; x) = Ef(S,,/n) = J' f("~) dF" ,( t),
, n

(2)

where E denotes expectation and F,l.\( t) is the distribution function of S"
depending on x. F".,( t) is assumed to be continuous in x. Various proper
ties of LnCt; x) can be found in Khan [10].

For p > 0 and x E J define

D::u:x)=I',lfU)-f(XfdF".,(t)=Elf(Sn/n)-f(x)ll'. (3)

Clearly, D::U; x) is bounded, and it is continuous in x for Fn.A t) is
assumed to be continuous in x. Note that D"U; x) = D;,U; x) is precisely
the quantity dictating the properties of L,,(f x). For example,
SUP'E/D"U;x)~O (as n~'L)=L"U:x)~f(x) uniformly in xEI.
Moreover, it is known that max"S\s!> ILnU; x) -f(x)1 ~

max"sxs!> D,,(}; x) ~ Kw(n 12) where w(b) is the modulus of continuity of
f on finite [a, h]. The object here is to find the asymptotic rate of the
related LI' norm.

Let G(x) be a distribution function on I. The LI' norm is defined by

p>O. (4)

However, for the sake of notational simplicity the results will be stated for
the quantity IID"U)II j:.
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Assuming that f has bounded continuous derivative f'(x) i' 0 'V x E I
define

VpU) = r (JP(x) If'(xW' dG(x).., (5)

Note that G(x) can be replaced by improper distribution (dG(x) = dx) if
the relevant integrals exist as Riemann or Lebesgue integrals.

Under some conditions it is proved that nP
!2 IIDIlU)II;: --> CI' V"U) as

n --> x where Cp is an absolute constant. Moreover, it is also shown that

n IILIlU; x) -f(x)11

,,, 1-"
=n I ILIl(fx)-f(x)1 dx-->- J (J2(X) If"(x)1 dx

~(l 2 (}
as n --> ,x

provided that f has continuous derivatives f' and f" on [a, h] s:::: I. These
results are established in Section 3 and several special cases are illustrated
in Section 4.

3. THE MAl]\; RESULTS

The asymptotic limit of the L" norm is given by

THEOREM 1. Let f(x) he a hounded continuous function on IR with houn
ded continuous derivative I'(x)i'O 'VXEIR. Let X I ,X2,... he iid random
variables with mean x and variance (J2(X) where x is a continuous parameter
with values in an interval Is::::1R. Assume that EIXII'+')<XJ (r~2, 6>0)
and ¢r(x) = E IX, - xl r is G-integrahle where G is a distrihution function on
I. Let LnCf;x), D:;U;x), IIDnCnll,,, and VI'U) he defined hy (2), (3), (4),
and (5), respectively. Then

and

0< p ~ r, (6)

where CI'=21'/2r((p+ 1)/2)/';;.

COROLLARY I. Let f(x) he a continuous function on IR with continuous
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derivative f'(x)#O 'ifx in finite closed interval [a, bJ sf. Then under the
remaining conditions ol Theorem I,

where

f
h

. p/2 p' _ ~ .,
hm n D,J/,x)dx-CpVpU),

n--.J_ a

,·h

Vp(f) = I aP(x) If'(xW dx.
-"

0< p~r, (7)

COROLLARY 2. The conclusions (6) and (7) remain valid 'ifp > 0 if
E IXII p< CfJ and rPp(x) = E IX, ~ xl p is G-integrable 'if p > O. fn particular,
(6) and (7) hold 'ifp>O il X, has density gAy)=exp(yQ(x)-b(Q(x)))
relative to a a~linite measure J.1 and rPp(x) is G-integrable.

Proof Letting S,,=L;'~, Xl and (,,=L;'~,(X,-x)we have

f(S"ln) =f(x) + ~.('(tI),
n

(8)

where tI = x + eh (0 < e < I), h = ("In. Since E IXIl l < ::tJ, tI = tI" ~a.s. x, and
F(x) is continuous with f'(x) # 0 'if x, using Cramer's theorem it follows
from the central limit theorem that

z"

,
In(f(S,,ln)-f(x))~ Z

O'(x) If'(x)1
as n~::tJ 'ifXE f, (9)

where .!!. denotes convergence in distribution and Z has standard normal
distribution. From (8) we have

v

R" = ~(f(S,,/n) - f(x)) = ~';- f'(tI).
~n

Since I' is bounded, we have

E IR"I" II ~ Mn (1+ 0)/1 E 1(,,1'+ ". ( 10)

Now since XI' Xl'''' are iid with mean x and EIX,I'+"<oc
(-=EIX,-xl,+<i<w), it follows from a result of Jogdeo and Dhar
madhikari [8J that

"E 1(',1 ' +<) ~ Cn('/lJ(I+I') , I E IXi~xl' t ,I ~ enil/lill + ")E IX, -xl ' + ", (II)
i= I
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where C is a constant depending only on r+ b. Hence it follows from (10)
that

(12 )

Thus E IRnI'H is bounded and {IRnl r, n ~ I} is uniformly integrable
sequence of random variables. Consequently, {IZnl r, n ~ I} (Zn defined by
(9)) is also uniformly integrable. Hence it follows from moment con
vergence theorem (cf. Loeve [13, p. 186]) that

0< p::;::r.

Since

it follows that

lim n,,!2 D~Cf, x) = C"a"(x) I{'(x)li'.
n~

(13 )

Now we claim that (Jp(x) 1{,(x)l p is G-integrable. Since I{'IP is bounded, it
is enough to show that (Jp(x) is G-integrable. For r ~ 2 Jensen's inequality
gives

Since r/Jr(x) (r ~ 2) is assumed to be G-integrable, hence ap(x) is G
integrable. Moreover, EIRnIP::;::MCEIX,-xIP=MCr/Jp(x) by (12), and
since r/JAx) (r~ p) is G-integrable, it follows from (13) and the dominated
convergence theorem that

0< p::;::r.

This proves Theorem 1. Corollary 1 is obvious. Corollary 2 follows from
Theorem 1 and the fact that the distribution with the density gx( y) =
exp( yQ(x) - b( Q(x))) admits moments of all orders (cf. Lehmann [11]).

We will now prove another asymptotic result under some additional
conditions. Let XI' X2,... be iid random variables with mean x and variance
(J2(.\"). Assume that the mgf (moment generating function)
!/J(8) = Eexp(8X,) is finite, and let hn="I;'~I(Xi-x)/n. It is known (cf.
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Chernoff [4], Khan [9, p. 506]) that for () > 0 there exists a number p < 1
such that

We can now prove

P( Ih,,1 ~ 6):( 2p", O<p<l. ( 14)

THEOREM 2. Let X I' X 2 .... he iid random variahles with mean x E I s; ~
and t:ariance (J2(X) with finite mgI ljJ( 0) = E exp(ex)). Let f he a continuous
fimction on :R with continuous derivatives I' and I" on finite closed interval
[a, h] s; I. and let L"Cf; x) he defined hv (2). Then

·h 1 ,h

lim II I ILn(fx)-f(x)1 dX=71 (J'2(X) If"(x)1 dx. (15)
II .... I ~ 11 .... oJ (l

Proof. Let S,,='2..,;' I,r, and (n = '2..,;' I(X,~X). Clearly, E(,,=O and
E(~ = fJ(J2(X). Using Taylor expansion we have

" v.
.. : f' S" f"( l,~ f'''(fISn/n)=. (X)+-. x)+-2J. x)+rn.

11 Ir

where rn=((~/2n2)(/"(x+Ohn)-f"(x)),O<O<L hn=(n!I1. Hence taking
expectations we have

. (J'2(X).
Ln(f; x) = fIx) +-2-r (x) + Er".

II
( 16)

Note that v(hn)=(/"(x+Oh,,)-f"(x))->"SO as hn->"sO (as n->cD).
Hence given I; > 0 we can choose 6> 0 such that Iv(h,,)1 < c whenever
Ihnl < 6. This is possible by a proper choice of n for h" = (n/n ->as 0 as
/1 -> x. Hence for x E [a, h] we have

I I E I I E(~ Iv(hn)1 Ilh I 'I
Ern :( rn = 2/1 2 II n < () I

where I is the usual indicator function. Thus

It follows from Cauchy-Schwarz inequality that

E(~I{lhnl ~6} :(/E IC,1 4P(lh,,1 ~6).

( 17)

(18 )
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Since E 1(111 4
~ Cn 2E IXI - xl 4 by (11), hence it follows from (14), (17), and

(18) that

Thus

n IErlll ~1:1l(x)lO as n ---> ex. ( 19)

Hence (15) follows from (16) and (19) and Theorem 2 is proved.
Theorem 2 remains valid if XI' X 2 , ... are iid with density g,( y) =

exp( yQ(x) - h(Q(x))) relative to a cr-finite measure fl. This is due to the fact
that g,( y) admits finite mgf (cf. Lehmann [11]). We remark in passing
that if f and f' E C[a, h], then it is easy to see that

r- (·h

In I ILnU;x)-f(x)1 dx=o(I).
'"

4. SPECIAL CASES

First of all (6) and (7) specialized to p = 1 give

r- A A-lim In IIDIlU)111 = - V(n = :: J cr(x) 1f'(x)1 dG(x),
n--~ n ltj

and

r- .n A'n
lim Jnl DIlU,x)dx= -I cr(x) 1f'(x)1 dx,

1/----+"'0 n .... a

which are analogous to (I). We will now identify the limits in (6) and (7)
for various special operators. The main emphasis is on the limits.

(i) Bernstein Operator. Let f E C[O, 1] with continuous derivative
f'(x)*O VXE[O,I], and let X I ,X2 , ••• be iid with P(X I =I)=
1- P(X 1 = 0) = x, 0 ~ x ~ 1. Then (2) defines Bernstein polynomials
BIlU; x) and

II

D::U x) = L If(kln) - fix )1" Pnk(x),
k 0

.1

IID,Jnll ~ =, D{;(f>,) dx,
-0
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where Pn.k(X)=(Z)xk(l-xr k. Since EX,=x and a2(x)=x(l-x), (6)
gIves

and

lim nt'/2 IIDnU)II~ = Ct' I' xt'/2(1 -x)t'/21f'(xW dx,,-,-y. 0
Vp~O,

(ii) Szasz Operator. Let X"X2,... be iid with P(X,=k)=e-xxkjk!,
k = 0, I, 2, ... , x ~ 0. Then (2) defines Szasz operator SnU; x) and

J (nx)k
D;;U;x)=e nx I If(kjn)-f(xW---,;I'

k-O .

Since EX, =a2(x)=x, it follows from (6) that

and

}~~ 0zrDnU; x) dx = fierX
I
/
2 1f'(x)1 dx,

Vp>O,

O~a<b<x.

(iii) Weierstrass Operator. Let Xl' X 2,... be iid with density gAy) =
(2n)-1/2 exp(_-\.(y-x)2), -x<Y, x<x. Then (2) defines Weierstrass
operator

~ ( ")n ex, nu-
WnU; x) = 2n J'i) f(x + u) exp -2 du,

and

Ii fa: ( nU

2

)D;;(f, x) = ~bc -xc If(x+ u) - f(xWexp -2 duo

Since EX, =X and a2(x)= I, it follows from (6) that

lim nt'/2 IIDnU)11 ~ = Ct' r' 1f'(xW dG(x),
n-'x~, v ''{
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and

~h",h

I, 1"2 I DI'( /' ) d - (' J 1/"( )1/) /.
n -~~:t- n .J

u
11.' x. x ~ -fl 11' X. (.\

where [a, hJ is a finite closed interval. In particular,

\j p > 0,

347

·h A- A·I>lim ~J DnU;x)dx= '::VU)= .::11f'(x)ldx,
fl _f.' II rr n .., (/

where VU) is the total variation of f on [a, h].

(iv) Gamma Operator. Let XI' X 2 ,... be iid with density
g,( Y) = x' Ie"" y? 0, x> O. Then (2) defines Gamma operator

_t II "':I.

GnU;X)=( I)' I f(yln)yn Ie dr.
n- .o()

lim nl';2 IIDnU)IIj, = CI' r
h

xl' 1f'(xW dG(x),
n -. J- "'a

In particular,

,.h to/)

I· 1';2 J DI'( f' ) / - C I .1' 1/"( )11' i1m n n . ,x {X - I' X , X ( x,
11- 'f. a "a

O:::;:a<h< -L.

0:::;: a < h < ex, p > O.

(v) Baskakov Operator. Let XIJ X 2 , ... be iid with P(X I = k) = pq\
k = 0, I, 2, ... (0:::;: p:::;: I, P+ q = 1), If p = (1 + x) I (X? 0), then (2) defines
Baskakov operator

*(/' ~ /'kl (n+k-I)( x )kBtl, ,x)=(1 +x) tI L. ,( n) k --.'
k ~() I+.x

and (6) and (7) hold with 0-2(x)=x(1 +x).

(vi) Feller Operator. This is an example where Theorem 1 holds for
only restrictive p. Let XI' X 2 , ... be iid random variables with common den
sity

2
gAy)= n(1 + (y_X)2)2' - CXJ < y, x < CD.
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In what follows FII ,( y) denotes the distribution function of SII =

XI + ... + XII and ,1(11.,( y) is the resulting density function. Letting

some routine calculations show that

Then (2) defines the Feller operator L,J/; x). The random variable XI has
all the moments of order p:'( 3 - c'j () > 0) but none of order p;? 3. Hence it
follows from Theorem 5 of Brown [2, p. 661] that the moment con
vergence used in the proof of Theorem I holds for p:'( 3 - 6 but fails for
p;?3. Since EX, =X and O'

2(x)= 1, we obtain from (6) that

lim 111'2 D,,(/)II;; = CI' 1" 1/,(x)I" dG(x),
n • f "

p :'( 3 - 6,

a result with the same limit as in Example (iii) except for restrictive p.
Several other special cases can be obtained from (6) and (7). Finally,

(15) can be specialized to various operators by identifying o'(x) in the
asymptotic limit. For example, in the case of Bernstein polynomials we
have

lim 11 1'1 IB"U; x)-f(x)1 dx=~ II x I2(1-x)I/2If"(x)1 dx.
'0 2'0
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